# HYBRID STEPPING MOTORS \& DRIVERS 

## 2 Phase KH Series(80OType ) 3 Phase TRISYN KT/KR Series

| CONTENTS |  |
| :---: | :---: |
| 2-Phase Hybrid Stepping Motor | Selection Guide |
|  | KH39EM2 - 4 |
|  | KH39FM2 - 6 |
|  | KH39GM2 - 8 |
|  | KH42HM2 - 10 |
|  | KH42JM2 - 12 |
|  | KH42KM2 - 14 |
|  | KH56JM2 - 16 |
|  | KH56KM2 - 18 |
|  | KH56QM2 - 20 |
| 2-Phase Stepping Motor Driver | SERVEX FSD - 22 |
| 3-Phase Hybrid Stepping Motor | Selection Guide -26 |
|  | KT35FM1 - 28 |
|  | KT42 $\square$ M06 - 30 |
|  | KT42■M1 $\quad 32$ |
|  | KT42ロM4 - 34 |
|  | KT60KM06 - 36 |
|  | KT60LM06 - 38 |
|  | KT60KM1 40 |
|  | KT60LM1 42 |
|  | KT86ロM1 -44 |
|  | KR42HM4 - 46 |
|  | KR42JM4 - 48 |
|  | KR42KM4 - 50 |
| 3-Phase Stepping Motor Driver | SERVEX FTD - 52 |

## 2 - PHASE STEPPING MOTORS

1.Unipolar type $\quad$ Stepping angle $=1.8$ deg./step $V c c=24 \mathrm{~V}$

| Standard size |  |  |  | Holding Torque |  | Winding Resistance | Current | Voltage | Inductance | Model | Driver | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm |  | inch | $\mathrm{mN} \cdot \mathrm{m}$ | oz in | $\Omega /$ phase | A/phase | V | $\mathrm{mH} /$ phase |  |  |  |
| 39 sq.x | 20.8 | 1.54 sq.x | 0.82 | 59 | 8.3 | 14 | 0.4 | 5.6 | 6.4 | KH39EM2-801 | $\bigcirc$ | 4 |
|  | 27 |  | 1.06 | 88 | 13.0 | 15 | 0.42 | 6.3 | 8.5 | KH39FM2-801 | $\bigcirc$ | 6 |
|  | 31 |  | 1.22 | 127 | 18.0 | 13.6 | 0.47 | 6.4 | 9.8 | KH39GM2-801 | $\bigcirc$ | 8 |
| 42 sq.x | 34 | 1.65 sq.x | 1.34 | 140 | 20 | 3.4 | 0.9 | 3.06 | 2.4 | KH42HM2-901, 911 | $\bigcirc$ | 10 |
|  |  |  |  |  |  | 9.6 | 0.58 | 5.57 | 6.0 | -902,912 | - |  |
|  |  |  |  |  |  | 14.7 | 0.46 | 6.76 | 9.3 | -903,913 | - |  |
|  | 40 |  | 1.58 | 236 | 33 | 2.85 | 1.2 | 3.42 | 2.5 | KH42JM2-901, 911 | - | 12 |
|  |  |  |  |  |  | 5.5 | 0.88 | 4.4 | 5.1 | -902,912 | - |  |
|  |  |  |  |  |  | 18.5 | 0.5 | 9.25 | 16.3 | -903,913 | - |  |
|  | 50 |  | 1.97 | 340 | 48 | 3.1 | 1.2 | 3.72 | 3.1 | KH42KM2-901,911 | - | 14 |
| 56 sq.x | 42 | 2.2 sq.x | 1.65 | 422 | 60 | 0.58 | 3.0 | 1.74 | 0.61 | KH56JM2-901, 911 | - | 16 |
|  |  |  |  |  |  | 1.39 | 2.0 | 2.78 | 1.8 | -902,912 | - |  |
|  |  |  |  |  |  | 4.9 | 1.0 | 4.9 | 6.68 | -903,913 | - |  |
|  | 54 |  | 2.13 | 834 | 118 | 0.77 | 3.0 | 2.3 | 1.04 | KH56KM2-901,911 | - | 18 |
|  |  |  |  |  |  | 1.79 | 2.0 | 3.6 | 1.7 | -902,912 | $\bigcirc$ |  |
|  |  |  |  |  |  | 6.71 | 1.0 | 6.71 | 9.36 | -903,913 | - |  |
|  | 76 |  | 2.99 | 1324 | 187 | 1.18 | 3.0 | 3.54 | 2.4 | KH56QM2-901, 911 | - | 20 |
|  |  |  |  |  |  | 2.73 | 2.0 | 5.46 | 5.4 | -902,912 | $\bigcirc$ |  |
|  |  |  |  |  |  | 9.9 | 1.0 | 9.9 | 21.6 | -903,913 | - |  |

Note; Driver model FSD2U2P12-01 is applicable to the motors with
2 .Bipolar type
Stepping angle $=1.8$ deg./step $\quad \mathrm{Vcc}=24 \mathrm{~V}$

| Standard size |  |  |  | Holding Torque |  | Winding <br> Resistance | Current | Voltage | Inductance | Model | Driver | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm |  | inch | $\mathrm{mN} \cdot \mathrm{m}$ | oz in | $\Omega /$ phase | A/phase | V | $\mathrm{mH} /$ phase |  |  |  |
| 39 sq.x | 20.8 | 1.54 sq.x | 0.82 | 78 | 11 | 6.0 | 0.6 | 3.6 | 5.5 | KH39EM2-851 | $\bigcirc$ | 4 |
|  | 27 |  | 1.06 | 118 | 17 | 6.0 | 0.67 | 4.0 | 6.8 | KH39FM2-851 | $\bigcirc$ | 6 |
|  | 31 |  | 1.22 | 157 | 22 | 7.0 | 0.65 | 4.6 | 9.8 | KH39GM2-851 | $\bigcirc$ | 8 |
| 42 sq.x | 34 | 1.65 sq.x | 1.34 | 197 | 28 | 3.1 | 1.0 | 3.1 | 4.3 | KH42HM2-951,961 | $\bigcirc$ | 10 |
|  | 40 |  | 1.58 | 314 | 44 | 5.4 | 0.85 | 4.59 | 9.3 | KH42JM2-951,961 | $\bigcirc$ | 12 |
|  | 50 |  | 1.97 | 403 | 57 | 2.3 | 1.2 | 2.76 | 4.0 | KH42KM2-951,961 | $\bigcirc$ | 14 |
| 56 sq.x | 42 | 2.2 sq.x | 1.65 | 490 | 69 | 0.98 | 2.0 | 1.96 | 2.27 | KH56JM2-951,961 | $\bigcirc$ | 16 |
|  | 54 |  | 2.13 | 932 | 132 | 1.32 | 2.0 | 2.4 | 3.19 | KH56KM2-951, 961 | $\bigcirc$ | 18 |
|  | 76 |  | 2.99 | 1373 | 194 | 2.0 | 2.0 | 4.0 | 7.35 | KH56QM2-951,961 | $\bigcirc$ | 20 |

Note; Driver model FSD2B2P12-01 is applicable to the motors with - .

## - 2 - Phase Driver

| Applicable <br> motors type | Standard size |  | Power supply | OUTPUT current <br> Am | Step angle | Model | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm | inch |  |  |  |  |  |
| Uni-poler | $57 \times 73 \times 42$ | $2.25 \times 2.88 \times 1.65$ | $12-30 \mathrm{~V}$ DC | $0.33-2.00$ | $1 / 1,1 / 2,1 / 4$ | FSD2U2P12-01 | 22 |
| Bi-poler | $57 \times 73 \times 42$ | $2.25 \times 2.88 \times 1.65$ | $12-30 \mathrm{~V}$ DC | $0.41-2.00$ | $1 / 1,1 / 2,1 / 4$ | FSD2B2P12-01 | 24 |

## 3 - PHASE STEPPING MOTORS

## 1 .Low speed high torque type $\quad V_{c c}=24 \mathrm{~V}$

| Step angle deg./step | Standard size |  |  |  | Holding Torque |  | Winding Resistance <br> $\Omega /$ 2phase | Current <br> A/2phase | Voltage <br> V | Inductance <br> $\mathrm{mH} /$ 2phase | Model | Driver |  |  | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm |  | inch |  | $\mathrm{mN} \cdot \mathrm{m}$ | oz in |  |  |  |  |  |  |  |  |  |
| 0.6 | 42 sq.x | 21 | 1.65 sq.x | 0.8 | 45 | 6.4 | 5.9 | 0.9 | 5.3 | 3.1 | KT42EM06-551 | - | \# | \& | 30 |
|  |  | 34 |  | 1.34 | 90 | 12.7 | 1.2 | 2.4 | 2.88 | 0.8 | KT42HM06-551 | - | \# | \& |  |
|  |  | 40 |  | 1.58 | 180 | 25.5 | 1.3 | 2.4 | 3.12 | 1.3 | KT42JM06-551 | - | \# | \& |  |
|  |  | 48 |  | 1.89 | 200 | 28.3 | 2.0 | 2.3 | 4.6 | 1.4 | KT42KM06-551 | - | \# | \& |  |
|  |  |  |  |  | 300 | 42 | 0.55 | 3.8 | 2.09 | 1.0 | KT60KM06-751 | - | - | - |  |
|  |  | 47 |  | 1.85 |  |  | 1.6 | 2.2 | 3.52 | 3.1 | -752 | - | \# | \& | 36 |
|  |  |  |  |  | 500 | 69 | 0.55 | 3.8 | 2.09 | 1.0 | KT60KM06-551 | - | - | - |  |
|  |  |  |  |  |  |  | 1.6 | 2.2 | 3.52 | 3.0 | -552 | - | \# | \& |  |
|  | 60 sq.x |  | . 36 sq.x |  | 600 | 83 | 0.73 | 3.8 | 2.77 | 1.8 | KT60LM06-751 | - | - | - |  |
|  |  | 58 |  | 2.29 |  |  | 2.2 | 2.2 | 4.84 | 5.7 | -752 | - | \# | \& | 38 |
|  |  |  |  |  | 900 | 125 | 0.73 | 3.8 | 2.77 | 1.7 | KT60LM06-551 | - | - | - |  |
|  |  |  |  |  |  |  | 2.2 | 2.2 | 4.84 | 5.6 | -552 | - | \# | \& |  |
|  | 35 sq.x | 28 | 1.38 sq.x | 1.10 | 59 | 8.3 | 39.0 | 0.3 | 11.7 | 26.0 | KT35FM 1-552 | - | \# | \& | 28 |
|  |  | 21 |  | 0.8 | 70 | 9.9 | 5.9 | 0.9 | 5.3 | 2.6 | KT42EM 1-551 | - | \# | \& |  |
|  | 42 sq.x | 34 | 1.65 sq.x | 1.34 | 140 | 19.8 | 1.1 | 2.4 | 2.6 | 0.5 | KT42HM 1-551 | - | \# | \& | 32 |
|  |  | 40 |  | 1.58 | 210 | 29.7 | 1.2 | 2.4 | 2.88 | 0.8 | KT42JM 1-551 | - | \# | \& |  |
|  |  | 48 |  | 1.89 | 280 | 39.6 | 1.5 | 2.4 | 3.6 | 1.0 | KT42KM 1-551 | - | \# | \& |  |
| 1.2 |  | 47 |  | 1.85 | 320 | 45.3 | 0.55 | 3.8 | 2.09 | 0.8 | KT60KM 1-551 | - | - | - | 40 |
|  | 60sq.x | 47 | 2.36 sq.x | 1.85 | 320 | 45.3 | 1.6 | 2.2 | 3.52 | 2.5 | -552 | - | \# | \& |  |
|  |  | 58 |  | 2.29 | 600 | 85 | 0.73 | 3.8 | 2.77 | 1.0 | KT60LM 1-551 | - | - | - | 42 |
|  |  | 58 |  | 2.29 | 600 | 85 | 2.2 | 2.2 | 4.84 | 3.3 | -552 | - | \# | \& |  |
|  | 86 sq.x | 61 | 3.38 sq.x | 2.40 | 2000 | 278 | 1.8 | 3.0 | 5.4 | 18.0 | KT86LM 1-551 | - | - | \& | 44 |
|  |  | 95 |  | 3.74 | 4000 | 556 | 2.8 | 2.5 | 7.0 | 36.6 | KT86SM 1-551 | - | \# | \& |  |
|  |  | 20 |  | 0.79 | 70 | 9.7 | 6.6 | 0.8 | 5.28 | 5.7 | KT42EM4-551 | - | \# | \& |  |
|  |  | 34 |  | 1.34 | 130 | 18 | 3.4 | 1.3 | 4.42 | 4.7 | KT42HM4-551 | - | \# | \& |  |
| 3.75 | 42 sq.x |  | 1.65 sq.x |  |  |  | 8.8 | 0.8 | 7.04 | 12.3 | -552 | - | \# | \& | 34 |
|  |  | 40 |  | 1.58 | 180 | 25 | 4.3 | 1.2 | 5.16 | 8.7 | KT42JM4-551 | - | \# | \& |  |
|  |  |  |  |  |  |  | 11.0 | 0.8 | 8.8 | 22.0 | -552 | - | \# | \& |  |

Note-1; Driver model FTD3S2P11-01 is applicable to the motors with
Note-2; Driver model FTD3S3P12-01 is applicable to the motors with \# .
Note-3; Driver model FTD3S3P14 is applicable to the motors with \&.
2 .High speed steady torque type
$\mathrm{Vcc}=24 \mathrm{~V}$

| Step angle deg./step | Standard size |  | Holding Torque |  | Winding <br> Resistance <br> $\Omega /$ pphase | Current <br> A/2phase | Voltage <br> V | $\begin{array}{\|l\|} \hline \text { Inductance } \\ \hline \mathrm{mH} / 2 \text { phase } \end{array}$ | Model | Driver |  |  | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm | inch 1.34 | $\mathrm{mN} \cdot \mathrm{m}$ | $\mathrm{oz} \cdot$ in |  |  |  |  |  |  |  |  |  |
| 3.75 | 42 sq.x <br>  <br>  <br> 40 | $1.65 \mathrm{sq} \cdot \mathrm{x}$1.34 <br>  <br>  <br> 1.58 | 49 | 6.9 | 1.4 | 2.0 | 2.8 | $\begin{aligned} & 1.7 \\ & 4.0 \end{aligned}$ | KR42HM4-551 | - | \# | \& | 46 |
|  |  |  |  |  | 3.4 | 1.3 | 4.42 |  | -552 | - | \# | \& |  |
|  |  |  | 88 | 12.5 | 1.75 | 2.0 | 3.5 | 2.1 | KR42JM4-551 | - | \# | \& | 48 |
|  |  |  |  |  | 4.3 | 1.2 | 5.16 | 8.7 | -552 | - | \# | \& |  |
|  |  |  | 118 | 16.7 | 1.4 | 2.5 | 3.5 | 1.7 | KR42KM4-551 | - | \# | \& | 50 |
|  |  |  |  |  | 5.0 | 1.3 | 6.5 | 7.7 | -552 | $\bigcirc$ | \# | \& |  |

Note-1; Driver model FTD3S2P11-01 is applicable to the motors with
Note-2; Driver model FTD3S3P12-01 is applicable to the motors with \# .
Note-3; Driver model FTD3S3P14 is applicable to the motors with \& .

## 3 .Phase Driver

| Standard size |  | Power supply | OUTPUT current <br> A | Step angle | Model | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | inch |  | $0.5-2.0$ |  | FTD3S2P11-01 | 52 |
| $57 \times 73 \times 42$ | $2.25 \times 2.88 \times 1.65$ | $12-58 \times 1.65$ | $12-24 \mathrm{~V}$ DC | $0.55-3.0$ | $1 / 1,1 / 2$ | FTD3S3P12-01 |
| $57 \times 73 \times 42$ | $2.25 \times 2.88 \times 1.64$ |  |  |  |  |  |
| $70 \times 134 \times 35$ | $2.76 \times 5.28 \times 1.38$ | $22-39 \mathrm{~V}$ DC <br> 5 V DC | $0.5-3.0$ | $1 / 1,1 / 2,1 / 4,1 / 8$ | FTD3S3P14-01 | 56 |

System Configuration


## 2-Phase Hybrid Stepping Motor KH39 series 800 type

1.8

## HIGH TORQUE, LOW VIBRATION AND LOW NOISE

■ STANDARD SPECIFICATIONS

| $M O D E L$ | U N \| T | KH39EM2 |  |
| :---: | :---: | :---: | :---: |
|  |  | -801 | -851 |
| SHAFT | - | SINGLE |  |
| DRIVE METHOD | $\square$ | UNI-POLAR | BI-POLAR |
| NUMBER OF PHASES | - | 2 | 2 |
| STEP ANGLE | deg./step | 1.8 | 1.8 |
| VOLTAGE | V | 5.6 | 3.6 |
| CURRENT | A/PHASE | 0.4 | 0.6 |
| RESISTANCE | $\Omega /$ PHASE | 14.0 | 6.0 |
| INDUCTANCE | mH/PHASE | 6.4 | 5.5 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 59 | 78 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 8.3 | 11 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 7.9 | 7.9 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 1.1 | 1.1 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 14 | 14 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.08 | 0.08 |
| WEIGHT | $g$ | 110 | 110 |
|  | lb | 0.24 | 0.24 |
| INSULATION CLASS | $\square$ | E EQUIVALENT ( $120^{\circ} \mathrm{C} 248{ }^{\circ} \mathrm{F}$ )(UL VALUE: CLASS B-130$\left.{ }^{\circ} \mathrm{C}\right)$ |  |
| INSULATION RESISTANCE | - | $500 \mathrm{VDC} \quad 100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | - | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP.RANGE | ${ }^{\circ} \mathrm{C}$ | 0 to 50 |  |
| ALLOWABLE TEMP.RISE | deg. | 70 |  |

DIMENSIONS unit $=\mathrm{mm}$ (inch)



## Features

## 1. High torque

Output is 1.3 times as high as conventional products.
2. Low noise $-7 \mathrm{~dB}(\mathrm{~A})$ quieter than conventional products.

TORQUE CHARACTERISTICS VS PULSE RATE


## CONNECTION DIAGRAMS

| UNI-POLAR (801) | Excitation sequence |  |  |  |  | $\begin{aligned} & \text { BI-POLAR (851) } \\ & 3 \end{aligned}$ |  | Excitation sequence |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | STEP | 1 | 2 | 3 | 4 |  | 7 |  |  |  |  |  |
| BLACK O- YELLOW | ВІACK(1) | - |  |  | - | RED ${ }^{-}$ | - YELLOW | STEP | 1 | 2 | 3 | 4 |
| $3 * A \sim \varepsilon_{* B} 9$ | Yellow(7) | - | - |  |  | 2 |  | RED(3) | + | - | - | + |
| RED 0 - blue | BROWN(5) |  | - | - |  |  |  | yellow(7) | + | + | - |  |
| 5 | RED(3) | + | + | + | + | 5 | 9 | ${ }^{\text {BUUE(5) }}$ | - | - | + | + |
| ORANGE | BLUE(9) | + | + | + | + |  | WHIE | Rotation : CW |  |  |  |  |
|  | Rotation : CW |  |  |  |  |  |  |  |  |  |  |  |

CONNECTION CABLE TO MOTOR unit=mm (inch)


## 2-Phase Hybrid Stepping Motor KH39 series 800 type

1.8

## HIGH TORQUE, LOW VIBRATION AND LOW NOISE

- STANDARD SPECIFICATIONS

| MODEL | U N T T | KH39FM2 |  |
| :---: | :---: | :---: | :---: |
|  |  | -801 | (BI-POLAR) ${ }^{-851}$ |
| DRIVE METHOD | - | UNI-POLAR |  |
| NUMBER OF PHASES | - | 2 | 2 |
| STEP ANGLE | deg./step | 1.8 | 1.8 |
| VOLTAGE | V | 6.3 | 4 |
| CURRENT | A/PHASE | 0.42 | 0.67 |
| RESISTANCE | $\Omega /$ PHASE | 15.0 | 6.0 |
| INDUCTANCE | $\mathrm{mH} / \mathrm{PHASE}$ | 8.5 | 6.8 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 88 | 118 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 13 | 17 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 9.8 | 9.8 |
|  | oz - in | 1.4 | 1.4 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 19 | 19 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.10 | 0.10 |
| WEIGHT | $g$ | 160 | 160 |
|  | lb | 0.35 | 0.35 |
| INSULATION CLASS | $\square$ | E EQUIVALENT ( $120^{\circ} \mathrm{C} \quad 248^{\circ} \mathrm{F}$ )(UL VALUE: CLASS B-130$\left.{ }^{\circ} \mathrm{C}\right)$ |  |
| INSULATION RESISTANCE | $\square$ | 500 VDC 100M $\Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | $\square$ | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP.RANGE | ${ }^{\circ} \mathrm{C}$ | $0 \text { to } 50$ |  |
| ALLOWABLE TEMP.RISE | deg. | 70 |  |

DIMENSIONS unit = mm (inch)



## Features

## 1. High torque

Output is 1.3 times as high as conventional products.
2. Low noise $-7 \mathrm{~dB}(\mathrm{~A})$ quieter than conventional products.

TORQUE CHARACTERISTICS vs. PULSE RATE


CONNECTION DIAGRAMS


CONNECTION CABLE TO MOTOR unit = mm (inch)


## 2-Phase Hybrid Stepping Motor KH39 series 800 type

1.8

## HIGH TORQUE, LOW VIBRATION AND LOW NOISE

STANDARD SPECIFICATIONS

| MODEL | U N I T | KH39GM2 |  |
| :---: | :---: | :---: | :---: |
|  |  | -801 | -851 |
| DRIVE METHOD | - | UNI-POLAR | (BI-POLAR) |
| NUMBER OF PHASES | - | 2 | 2 |
| STEP ANGLE | deg./step | 1.8 | 1.8 |
| VOLTAGE | V | 6.4 | 4.6 |
| CURRENT | A/PHASE | 0.47 | 0.65 |
| RESISTANCE | $\Omega /$ PHASE | 13.6 | 7.0 |
| INDUCTANCE | $\mathrm{mH} / \mathrm{PHASE}$ | 9.8 | 9.8 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 127 | 157 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 18 | 22 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 11.8 | 11.8 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 1.7 | 1.7 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 27 | 27 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.15 | 0.15 |
| WEIGHT | $g$ | 240 | 240 |
|  | lb | 0.53 | 0.53 |
| INSULATION CLASS | $\square$ | E EQUIVALENT ( $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ ) (UL VALUE: CLASS B-130$\left.{ }^{\circ} \mathrm{C}\right)$ |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | $\square$ | 500VAC 50HZ 1 min . |  |
| OPERATING TEMP.RANGE | ${ }^{\circ} \mathrm{C}$ | 0 to 50 |  |
| ALLOWABLE TEMP.RISE | deg. | 70 |  |

DIMENSIONS unit = mm (inch)



## Features

## 1. High torque

Output is 1.3 times as high as conventional products.
2. Low noise $-7 \mathrm{~dB}(\mathrm{~A})$ quieter than conventional products.

TORQUE CHARACTERISTICS vs. PULSE RATE


PULL-OUT
PULL-IN

## CONNECTION DIAGRAMS

|  | EXCITATION SEQUENCE |  |  |  |  | BI-POLAR (851) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STEP 1 2 3 4 |  |  |  |  |  |  | EXCITATION SEQUENCE |  |  |  |  |
|  | BLACK(1) | - |  |  | - |  |  | STEP | 1 | 2 | 3 | 4 |
|  | YELLOW(7) | - | - |  |  |  |  | RED(3) | + | - | - | + |
|  | BROWN(5) |  | - | - |  |  |  | YELLOW(7) | + | + | - | - |
|  | ORANGE(11) |  |  | - | - |  |  | BLUE(5) | - | + | + | - |
|  | RED(3) | + | + | + | + |  |  | WHITE(9) | - | - | + | + |
|  | BLUE(9) | + | + | + | + |  |  |  |  |  |  |  |

CONNECTION CABLE TO MOTOR unit = mm (inch)


## 2-Phase Hybrid Stepping Motor <br> 1.8 KH42 series 900 type <br> HIGH TORQUE, LOW VIBRATION AND LOW NOISE

## - STANDARD SPECIFICATIONS

| MODEL |  | KH42HM2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SINGLE SHAFT | -901 | -902 | -903 | -951 |
|  | DOUBLE SHAFT | -911 | -912 | -913 | -961 |
| DRIVE METHOD | - | UNI-POLAR |  |  | BI-POLAR |
| NUMBER OF PHASES | - | 2 |  |  | 2 |
| STEP ANGLE | deg./step | 1.8 |  |  | 1.8 |
| VOLTAGE | V | 3.06 | 5.57 | 6.76 | 3.10 |
| CURRENT | A/PHASE | 0.9 | 0.58 | 0.46 | 1.0 |
| WINDING RESISTANCE | $\Omega /$ PHASE | 3.4 | 9.6 | 14.7 | 3.1 |
| INDUCTANCE | $\mathrm{mH} / \mathrm{PHASE}$ | 2.4 | 6.0 | 9.3 | 4.3 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 140 | 140 | 140 | 197 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 20 | 20 | 20 | 20 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 11.8 | 11.8 | 11.8 | 11.8 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 1.7 | 1.7 | 1.7 | 2.1 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 38 | 38 | 38 | 38 |
|  | oz $\cdot \mathrm{in}^{2}$ | 0.21 | 0.21 | 0.21 | 0.21 |
| WEIGHTS | g | 200 | 200 | 200 | 200 |
|  | lb | 0.44 | 0.44 | 0.44 | 0.57 |
| INSULATION CLASS | - | JIS Class E (120 $\left.{ }^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}\right)\left(\right.$ UL VALUE: CLASS B-130 ${ }^{\circ} \mathrm{C}$ 2660 $\left.{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |  |  |
| DIELECTRIC STRENGTH | - | 500 VAC 50 HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | 0 to 50 |  |  |  |
| ALLOWABLE TEMP.RISE | deg. | 70 |  |  |  |

$\square$ DIMENSIONS unit = mm (inch)



Features

- Improved Dynamic Torque

KH42HM2-901)

- Lowered Vibration \& Noise Level
(by increased stiffness of body construction)
- Improved Efficiency
(1.1 times of our previous model, by high grade materials.)


## TORQUE CHARACTERISTICS vs. PULSE RATE

KH42HM2-901, 911


KH42HM2-951, 961


KH42HM2-902, 912


CONNECTION CABLE TO MOTOR unit = mm (inch)


## 2-Phase Hybrid Stepping Motor <br> 1.8 KH42 series 900 type <br> HIGH TORQUE, LOW VIBRATION AND LOW NOISE

## - STANDARD SPECIFICATIONS

| $M O D E L$ |  | KH42JM2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SINGLE SHAFT | -901 | -902 | -903 | -951 |
|  | DOUBLE SHAFT | -911 | -912 | -913 | -961 |
| DRIVE METHOD | - | UNI-POLAR |  |  | BI-POLAR |
| NUMBER OF PHASES | - | 2 |  |  | 2 |
| STEP ANGLE | deg./step | 1.8 |  |  | 1.8 |
| VOLTAGE | V | 3.42 | 4.4 | 9.25 | 4.59 |
| CURRENT | A/PHASE | 1.2 | 0.88 | 0.5 | 0.85 |
| WINDING RESISTANCE | ת/PHASE | 2.85 | 5.5 | 18.5 | 5.4 |
| INDUCTANCE | $\mathrm{mH} / \mathrm{PHASE}$ | 2.5 | 5.1 | 16.3 | 9.3 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 236 | 236 | 236 | 314 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 33 | 33 | 33 | 44 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 14.7 | 14.7 | 14.7 | 14.7 |
|  | oz • in | 2.1 | 2.1 | 2.1 | 2.1 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 56 | 56 | 56 | 56 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.3 | 0.3 | 0.3 | 0.3 |
| WEIGHTS | $g$ | 260 | 260 | 260 | 260 |
|  | lb | 0.57 | 0.57 | 0.57 | 0.57 |
| INSULATION CLASS | - | JIS Class E ( $120^{\circ} \mathrm{C}$ 248 ${ }^{\circ} \mathrm{F}$ ) (UL VALUE: CLASS B-130 $\left.{ }^{\circ} \mathrm{C} \quad 266^{\circ} \mathrm{F}\right)$ |  |  |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |  |  |
| DIELECTRIC STRENGTH | - | 500 VAC 50 HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | $0 \text { to } 50$ |  |  |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |  |  |

$\square$ DIMENSIONS unit = mm (inch)



## Features

- Improved Dynamic Torque
(1.2 times torque of our previous model is generated at $300 \mathrm{r} / \mathrm{min}$, on model : KH42HM2-901)
- Lowered Vibration \& Noise Level
(by increased stiffness of body construction)
- Improved Efficiency
(1.1 times of our previous model, by high grade materials.)


## TORQUE CHARACTERISTICS vs. PULSE RATE

KH42JM2-901, 911



KH42JM2-902, 912


KH42JM2-903, 913


CONNECTION DIAGRAMS

| UNI-POLAR | EXCITATION SEQUENCE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | STEP | 1 | 2 | 3 | 4 |
| BLACK ○- Y YELLOW | BLACK(1) | - |  |  | - |
|  | YELLOW(7) | - | - |  |  |
| SED $\underbrace{\text { ¢A }} 9 e^{¢ B}$ | BROWN(5) |  | - | - |  |
|  | ORANGE(11) |  |  | - | - |
| $5 \phi^{\bar{A}}$ \% $e^{\phi \bar{B}} 11$ | RED(3) | $+$ | + | + | + |
| BROWN $0 \longrightarrow$ ORANGE | BLUE(9) | + | + | + | + |

BI-POLAR


EXCITATION SEQUENCE

| STEP | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| RED(3) | + | - | - | + |
| YELLOW(7) | + | + | - | - |
| BLUE(5) | - | + | + | - |
| WHITE(9) | - | - | + | + |

CONNECTION CABLE TO MOTOR unit = mm (inch)


## 2-Phase Hybrid Stepping Motor <br> 1.8 KH42 series 900 type <br> HIGH TORQUE, LOW VIBRATION AND LOW NOISE

- STANDARD SPECIFICATIONS

| MODEL |  | KH42KM2 |  |
| :---: | :---: | :---: | :---: |
|  | SINGLE SHAFT | -901 | -951 |
|  | DOUBLE SHAFT | -911 | -961 |
| DRIVE METHOD | - | UNI-POLAR | BI-POLAR |
| NUMBER OF PHASES | - | 2 | 2 |
| STEP ANGLE | deg./step | 1.8 | 1.8 |
| VOLTAGE | V | 3.72 | 2.76 |
| CURRENT | A/PHASE | 1.2 | 1.2 |
| WINDING RESISTANCE | $\Omega /$ PHASE | 3.1 | 2.3 |
| INDUCTANCE | $\mathrm{mH} / \mathrm{PHASE}$ | 3.1 | 4.0 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 340 | 403 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 48 | 57 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 19.6 | 19.6 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 2.8 | 2.8 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 85 | 85 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.46 | 0.46 |
| WEIGHTS | g | 360 | 360 |
|  | lb | 0.79 | 0.79 |
| INSULATION CLASS | $\underline{\square}$ | JIS Class E ( $\left.120^{\circ} \mathrm{C} \quad 248^{\circ} \mathrm{F}\right)\left(\right.$ UL VALUE : CLASS B- $\left.130^{\circ} \mathrm{C} \quad 266^{\circ} \mathrm{F}\right)$ |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | $\square$ | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | 0 to 50 |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |

DIMENSIONS unit = mm (inch)



## Features

- Improved Dynamic Torque
(1.2 times torque of our previous model is generated at $300 \mathrm{r} / \mathrm{min}$, on model :

KH42HM2-901)

- Lowered Vibration \& Noise Level
(by increased stiffness of body construction)
- Improved Efficiency
(1.1 times of our previous model, by high grade materials.)

TORQUE CHARACTERISTICS vs. PULSE RATE
UNI-POLAR


## BI-POLAR

KH42KM2-951, 961


EXCITATION SEQUENCE

| STEP | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| BLACK(1) | - |  |  | - |
| YELLOW(7) | - | - |  |  |
| BROWN(5) |  | - | - |  |
| ORANGE(11) |  |  | - | - |
| RED(3) | + | + | + | + |
| BLUE(9) | + | + | + | + |

EXCTATION SEQUENCE

| $\operatorname{STEP}$ | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| $\operatorname{RED}(3)$ | + | - | - | + |
| YELLOW(7) | + | + | - | - |
| BLUE(5) | - | + | + | - |
| WHITE(9) | - | - | + | + |

CONNECTION CABLE TO MOTOR unit $=\mathrm{mm}$ (inch)


## 2-Phase Hybrid Stepping Motor <br> $1.8^{\circ}$ KH56 series 900 type <br> HIGH TORQUE, LOW VIBRATION AND LOW NOISE

STANDARD SPECIFICATIONS

| MODEL |  | KH56JM2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SINGLE SHAFT | -901 | -902 | -903 | -951 |
|  | DOUBLE SHAFT | -911 | -912 | -913 | -961 |
| DRIVE METHOD | - | UNI-POLAR |  |  | BI-POLAR |
| NUMBER OF PHASES | - | 2 |  |  | 2 |
| STEP ANGLE | deg./step | 1.8 |  |  | 1.8 |
| VOLTAGE | $\checkmark$ | 1.74 | 2.78 | 4.9 | 1.96 |
| CURRENT | A/PHASE | 3.0 | 2.0 | 1.0 | 2.0 |
| WINDING RESISTANCE | $\Omega /$ PHASE | 0.58 | 1.39 | 4.9 | 0.98 |
| INDUCTANCE | mH/PHASE | 0.61 | 1.8 | 6.68 | 2.27 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 422 | 422 | 422 | 490 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 60 | 60 | 60 | 69 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 25 | 25 | 25 | 25 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 3.5 | 3.5 | 3.5 | 3.5 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | $115$ | 115 | $115$ | 115 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.62 | 0.62 | 0.62 | 0.62 |
| WEIGHTS | $g$ | 400 | 400 | $400$ | 400 |
|  | lb | 0.88 | 0.88 | 0.88 | 0.88 |
| INSULATION CLASS | $\longrightarrow$ | JIS Class E ( $\left.120^{\circ} \mathrm{C} \quad 248^{\circ} \mathrm{F}\right)\left(\right.$ UL VALUE : CLASS B $\left.130^{\circ} \mathrm{C} \quad 266^{\circ} \mathrm{F}\right)$ |  |  |  |
| INSULATION RESISTANCE | - | $500 \mathrm{VDC} 100 \mathrm{M} \Omega$ min. |  |  |  |
| DIELECTRIC STRENGTH | $\square$ | 500 VAC 50 HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | $0 \text { to } 50$ |  |  |  |
| ALLOWABLE TEMP.RISE | deg. | $70$ |  |  |  |

DIMENSIONS unit = mm (inch)



## Features

- Stronger torque generated in higher speed zone (KH56KM2-901 generates 1.2 times torque of our previous model at 1200 r/min. speed)
- Lowered Vibration by increased stiffness of body construction (lowered by 10\% than our previous model)
- Improved Efficiency
(1.1 times of our previous model, by high grade materials)


## TORQUE CHARACTERISTICS vs. PULSE RATE

UNI-POLAR
KH56JM2-901, 911


KH56JM2-902, 912


KH56JM2-903, 913

BI-POLAR

KH56JM2-951, 961


CONNECTION DIAGRAMS

| UNI-POLAR | EXCITATION SEQUENCE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | STEP | 1 | 2 | 3 | 4 |
| BLACK O-OYELLOW | BLACK | - |  |  | - |
| ВLACK - 2 - YELLOW | YELLOW | - | - |  |  |
| $\left.3{ }^{\phi A}\right\}^{\phi B} 9$ | BLOWN |  | - | - |  |
|  | ORENGE |  |  | - | - |
| $5 \phi \bar{A} 2$ | RED | + | + | + | + |
| BLOWN $0-$ ORENGE | BLUE | $+$ | + | + | + |



CONNECTION CABLE TO MOTOR unit = mm (inch)


## 2-Phase Hybrid Stepping Motor <br> $1.8^{\circ}$ KH56 series soo type <br> HIGH TORQUE, LOW VIBRATION AND LOW NOISE

STANDARD SPECIFICATIONS

| $M O D E L$ |  | KH56KM2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SINGLE SHAFT | -901 | -902 | -903 | -951 |
|  | DOUBLE SHAFT | -911 | -912 | -913 | -961 |
| DRIVE METHOD | - | UNI-POLAR |  |  | BI-POLAR |
| NUMBER OF PHASES | - | 2 |  |  | 2 |
| STEP ANGLE | deg./step | 1.8 |  |  | 1.8 |
| VOLTAGE | V | 2.3 | 3.6 | 6.71 | 2.4 |
| CURRENT | A/PHASE | 3.0 | 2.0 | 1.0 | 2.0 |
| WINDING RESISTANCE | $\Omega /$ PHASE | 0.77 | 1.79 | 6.71 | 1.32 |
| INDUCTANCE | mH/PHASE | 1.04 | 1.7 | 9.36 | 3.19 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 834 | 834 | 834 | 932 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 118 | 118 | 118 | 132 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 37 | $37$ | $37$ | 37 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 5.2 | 5.2 | 5.2 | 5.2 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 188 | 188 | 188 | 188 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 1.0 | $1.0$ | 1.0 | 1.0 |
| WEIGHTS | $g$ | 650 | 650 | $650$ | $650$ |
|  | lb | 1.4 | 1.4 | 1.4 | 1.4 |
| INSULATION CLASS | $\square$ | JIS Class E ( $\left.120^{\circ} \mathrm{C} \quad 248^{\circ} \mathrm{F}\right)\left(\right.$ UL VALUE : CLASS B $\left.130^{\circ} \mathrm{C} \quad 266^{\circ} \mathrm{F}\right)$ |  |  |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |  |  |
| DIELECTRIC STRENGTH | $\square$ | 500VAC 50HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | $0 \text { to } 50$ |  |  |  |
| ALLOWABLE TEMP. RISE | deg. | $70$ |  |  |  |

DIMENSIONS unit = mm (inch)



TORQUE CHARACTERISTICS vs. PULSE RATE UNI-POLAR

## Features

- Stronger torque generated in higher speed zone (KH56KM2-901 generates 1.2 times torque of our previous model at 1200 r/min. speed)
- Lowered Vibration by increased stiffness of body construction (lowered by 10\% than our previous model)
- Improved Efficiency
(1.1 times of our previous model, by high grade materials)
BI-POLAR

KH56KM2-951, 961


KH56KM2-902, 912


KH56KM2-903, 913


CONNECTION DIAGRAMS

| UNI-POLAR | EXCITATION SEQUENCE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | STEP | 1 | 2 | 3 | 4 |
|  | BLACK | - |  |  | - |
| O- YELLO | YELOW | - | - |  |  |
| $3 \underbrace{\phi A} 9 \underbrace{\phi B} 9$ | BLOWN |  | - | - |  |
| RED $0-\longrightarrow$ BLUE | ORENGE |  |  | - | - |
| $5 \phi \bar{A} 2 \underbrace{}_{\phi \bar{B} 11}$ | RED | + | + | + | + |
| OWN $0-\bigcirc$ ORENGE | BLUE | + | + | + | + |



CONNECTION CABLE TO MOTOR unit = mm (inch)


## 2-Phase Hybrid Stepping Motor <br> $1.8^{\circ}$ KH56 series soo type <br> HIGH TORQUE, LOW VIBRATION AND LOW NOISE

■ STANDARD SPECIFICATIONS

| MODEL |  | KH56QM2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SINGLE SHAFT | -901 | -902 | -903 | -951 |
|  | DOUBLE SHAFT | -911 | -912 | -913 | -961 |
| DRIVE METHOD | - | UNI-POLAR |  |  | BI-POLAR |
| NUMBER OF PHASES | - | 2 |  |  | 2 |
| STEP ANGLE | deg./step | 1.8 |  |  | 1.8 |
| VOLTAGE | V | 3.54 | 5.46 | 9.9 | 4.0 |
| CURRENT | A/PHASE | 3.0 | 2.0 | 1.0 | 2.0 |
| WINDING RESISTANCE | $\Omega /$ PHASE | 1.18 | 2.73 | 9.9 | 2.0 |
| INDUCTANCE | mH/PHASE | 2.4 | 5.4 | 21.6 | 7.35 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 1324 | 1324 | 1324 | 1373 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 187 | 187 | 187 | 194 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 69 | 69 | 69 | 69 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 9.8 | 9.8 | 9.8 | 9.8 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 269 | 269 | 269 | 269 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 1.47 | 1.47 | 1.47 | $1.47$ |
| WEIGHTS | kg | 1.0 | $1.0$ | 1.0 | 1.0 |
|  | lb | 2.2 | 2.2 | 2.2 | 2.2 |
| INSULATION CLASS | $\square$ | JIS Class E ( $120^{\circ} \mathrm{C}$ 248 ${ }^{\circ} \mathrm{F}$ ) (UL VALUE : CLASS B $130^{\circ} \mathrm{C}$ |  |  |  |
| INSULATION RESISTANCE | $\square$ | 500VDC $100 \mathrm{M} \Omega$ min. |  |  |  |
| DIELECTRIC STRENGTH | $\square$ | 500 VAC 50 HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | $0 \text { to } 50$ |  |  |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |  |  |

DIMENSIONS unit = mm (inch)



## Features

- Stronger torque generated in higher speed zone (KH56KM2-901 generates 1.2 times torque of our previous model at 1200 r/min. speed)
- Lowered Vibration by increased stiffness of body construction (lowered by 10\% than our previous model)
- Improved Efficiency
(1.1 times of our previous model, by high grade materials)


## TORQUE CHARACTERISTICS vs. PULSE RATE

 UNI-POLARKH56QM2-901, 911
BI-POLAR

KH56QM2-951, 961


KH56QM2-902, 912


KH56QM2-903, 913


CONNECTION DIAGRAMS

| UNI-POLAR | EXCITATION SEQUENCE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | STEP | 1 | 2 | 3 | 4 |
|  | BLACK | - |  |  | - |
| - 2 O-O YELLO | YELLOW | - | - |  |  |
| $3{ }^{\phi A} \underbrace{\phi B} 9$ | BLOWN |  | - | - |  |
| RED $0-\bigcirc$ BLUE | ORENGE |  |  | - | - |
| $5 \bar{A} \mathcal{S}$ | RED | + | + | + | + |
| BLOWN 0 - ORENGE | BLUE | + | + | + | + |

CONNECTION CABLE TO MOTOR unit = mm (inch)


# 2-Phase Hybrid Stepping Motor Driver HIGH TORQUE, SILENT ROTATION SERVEX FSD2U2P12-01 DC24V 

## Features

1. Ultra-compact driver measuring a mere $2.2 \times 2.9 \times 1.7$ inches.
2. Uni-polar fixed-current driver.
3. Micro-stepping feature may be used to be selected from any one of $1 / 1$ (full-step), $1 / 2$ (holf-step), and $1 / 4$ (micro-step)settings.
4. Through the use of 3-bit external signals, electric current settings may be specified to any one of a range of 8 different settings from $0.33-2 \mathrm{~A} /$ phase power.
5. Input commands may be selected from either of direction-of-rotation separate serial pulse signals or a combination of directional signals and pulse signals.

## Applicable motors

KH42HM2-901, 911
KH39EM2-801
KH42JM2-901, 911
KH42KM2-901, 911
KH39FM2-801
KH39GM2-801
KH56JM2-902, 912
KH56KM2-902, 912
KH56QM2-902, 912


## Power supply specifications

Motor Power supply voltage(VM) : $10.8 \mathrm{~V} \sim 33.0 \mathrm{~V}$


Motor output current; About 2A max. (different dependeing on the drive parameters of the motor being used)

Connector specifications

|  | FSD2U2P12-01 side | User side |  | Maker |
| :---: | :---: | :---: | :---: | :---: |
|  | Maker Model | Applicable Housing | Applicable terminal(real) |  |
| CN3 | IL-G-9P-S3T2-E | IL-G-9S-S3C2 | IL-G-C2-SC-10000 | J.A.E |
| CN2 | IL-G-6P-S3T2-E | IL-G-6S-S3C2 | IL-G-C2-SC-10000 | J.A.E |

## Required operating environment conditions

|  | In operation | At rest | Comments |
| :---: | :---: | :---: | :---: |
| Ambient temperature ( ${ }^{\circ} \mathrm{C}$ ) | $0 \sim+50$ | $-20 \sim 60$ |  |
| Ambient humidity $\%$ ) | $35 \sim 85$ | $35 \sim 85$ | Non condensation |

Functions, Setting and Connections


## Input circuit

CW, CCW, C0, C1, C2, HOFF


## Input signal specifications

| Item | Signal | Specification |  |
| :--- | :---: | :---: | :---: |
|  |  | MIN | MAX |
| High level input voltage | $\operatorname{Vih}(\mathrm{V})$ | 3.5 | 5.3 |
| Low level input voltage | $\operatorname{Vi}(\mathrm{V})$ | 0.0 | 0.8 |
| Rise time | $\operatorname{Tr}(\mu \mathrm{s})$ | - | 25 |
| Fall time | $\operatorname{Tf}(\mu \mathrm{s})$ | - | 15 |
| Input pulse range | $\operatorname{Twl}(\mu \mathrm{s})$ | 18 | - |
| Direction of rotation change timing | $\operatorname{Td}(\mu \mathrm{s})$ | 10 | - |

Note)Specified the voltage waveform between the user circuit ground and the FSD2U2P12-01 terminal


# 2-Phase Hybrid Stepping Motor Driver HIGH TORQUE, SILENT ROTATION SERVEX FSD2B2P12-01 DC24V 

## Features

1. Ultra-compact driver measuring a mere $2.2 \times 2.9 \times 1.7$ inches.
2. Bi-polar fixed-current driver.
3. Micro-stepping feature may be used to be selected from any one of $1 / 1$ (full-step), $1 / 2$ (micro-step), and $1 / 4$ (micro-step)settings.
4. Through the use of 3-bit external signals, electric current settings may be specified to any one of a range of 8 different settings from $0.41-2 \mathrm{~A} /$ phase power.
5. Input commands may be selected from either of direction-of-rotation separate serial

## Applicable motors

KH42HM2-951, 961
KH42JM2-951, 961
KH42KM2-951, 961
KH56JM2-851, 951, 961
KH56KM2-851, 951, 961
KH56QM2-851, 951, 961

KH39EM2-851
KH39FM2-851
KH39GM2-851


## Dimensions



## Power supply specifications

Motor Power supply voltage(VM) : $10.8 \mathrm{~V} \sim 33.0 \mathrm{~V}$


Motor output current; About 2A max. (different dependeing on the drive parameters of the motor being used)
Connector specifications

|  | FSD2U2P12-01 side |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Maker Model | Applicable Housing |  | Maker |
| CN3 | IL-G-9P-S3T2-E | IL-G-9S-S3C2 | IL-G-C2-SC-10000 | J.A.E |
| CN2 | IL-G-6P-S3T2-E | IL-G-6S-S3C2 | IL-G-C2-SC-10000 | J.A.E |

## Required operating environment conditions

|  | In operation | At rest | Comments |
| :---: | :---: | :---: | :---: |
| Ambient temperature ( ${ }^{\circ} \mathrm{C}$ ) | $0 \sim+50$ | $-20 \sim 60$ |  |
| Ambient humididy(\%) | $35 \sim 85$ | $35 \sim 85$ | Non condensation |

Functions, Setting and Connections


## Input circuit

CW, CCW, C0, C1, C2, H. OFF


Input signal specifications

| Item | Signal | Specification |  |
| :--- | :---: | :---: | :---: |
|  |  | MIN | MAX |
| High level input voltage | $\operatorname{Vih}(\mathrm{V})$ | 3.5 | 5.3 |
| Low level input voltage | $\operatorname{Vil}(\mathrm{V})$ | 0.0 | 0.8 |
| Rise time | $\operatorname{Tr}(\mu \mathrm{s})$ | - | 25 |
| Fall time | $\operatorname{Tf}(\mu \mathrm{s})$ | - | 15 |
| Input pulse range | $\operatorname{Twl}(\mu \mathrm{s})$ | 18 | - |
| Direction of rotation change timing | $\operatorname{Td}(\mu \mathrm{s})$ | 10 | - |

Note)Specified the voltage waveform between the user circuit ground and the FSD2B2P12-01 terminal

## Connector specifications

|  | FSD2B2P12-01 side | User side |  | Maker |
| :---: | :---: | :---: | :---: | :---: |
|  | Maker Model | Applicable Housing | Applicable terminal(real) |  |
| CN3 | IL-G-9P-S3T2-E | IL-G-9S-S3C2 | IL-G-C2-SC-10000 | J.A.E |
| CN2 | IL-G-4P-S3T2-E | IL-G-4S-S3C2 | IL-G-C2-SC-10000 | J.A.E |



## 3-Phase Hybrid Stepping Motor Driver

## HIGH TORQUE, SILENT ROTATION

## Features

1. Drive circuit is simplified because the motor is driven with star wiring connection.
2. High torque is obtained at low speed with the micro-step driver.
3. Ultra-low vibration and low noise achieved with our micro-step driver.
4. The step angle of $1 / 1,1 / 2,1 / 4$, and $1 / 8$ may be chosen using our micro-step driver.

## Applications

Suitable as controlled driving source in scientific or high precision industrial equipment such as OA equipment, measuring equipment, medical treatment equipment, physics and chemistry equipment, optical equipment, semiconductor processing equipment, and other precision machinery.

System Configuration





## Vibration Comparison

Micro-Step drive 1/8


Full-Step drive


## Advantage

## Constant current driver

With the fixed current drive method, a voltage sufficiently higher than the specified voltage, of the motor, is finely sliced in the switching circuit than applied to the motor coil. The current is maintained at a constant level whether the motor is rotating at low or high speed. With this method the output torque during high speed rotation is greatly improved with power consumption minimized.

## Micro-step driver

With the micro-step drive method, the mechanically determined step angle ( $3.75^{\circ}, 1.2^{\circ}$ or $0.60^{\circ}$ ) is divided by an electronic circuit and the motor is gradually rotated by a fine angle. The conventional excitation method makes a rotor rotates by a fixed angle by turning the magnetizing phase on and off through an input pulse. On the other hand, with the micro-step driving method, the current of one phase of the magnetizing phase can be gradually increased while the current of other phase is decreased thereby further dividing the step angle of the motor and making rotation even smoother. THE FTD3S3P14 driver, the FTD3S2P11 enable to set to step divisions of $1 / 4$ and $1 / 8$. Micro stepping drive is effective to reduce mechanical driving noise particularly when divisions not exceeding $1 / 8$.

## Rectangular wave drive

2-phase excitation (full-step) This is then or mal 2-phase excitation method. Torque is large and damping characteristics are excellent.
2-3 phase excitation (half-step) This method alternates between 2 and 3 phases excitation. The motor step angle is halved.


3-Phase Hybrid Stepping Motor $1.2^{\circ}$ KT35 series TRISYN

HIGH TORQUE, SILENT ROTATION

- STANDARD SPECIFICATIONS

| $M O D E L$ | U N T T | KT35FM1 |
| :---: | :---: | :---: |
|  |  | -552 |
| DRIVE METHOD | $\square$ | BI-POLAR |
| NUMBER OF PHASES | $\square$ | 3 |
| STEP ANGLE | deg./step | 1.2 |
| VOLTAGE | $\checkmark$ | 11.7 |
| CURRENT | A/2-PHASE | 0.3 |
| WINDING RESISTANCE | $\Omega / 2-P H A S E$ | 39 |
| INDUCTANCE | mH/2-PHASE | 26 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 5.9 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 8.3 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 9.8 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 1.4 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 8 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.044 |
| WEIGHTS | $g$ | 110 |
|  | lb | 0.24 |
| INSULATION CLASS | - | JIS Class E ( $120^{\circ} \mathrm{C} \quad 248^{\circ} \mathrm{F}$ )(UL VALUE:CLASS B $\left.130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}\right)$ |
| INSULATION RESISTANCE | $\square$ | 500VDC 100M $\Omega$ min. |
| DIELECTRIC STRENGTH | $\square$ | $500 \mathrm{VAC} \mathrm{50HZ} 1 \mathrm{~min}$. |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | 0 to 50 |
| ALLOWABLE TEMP. RISE | deg. | 70 |

DIMENSIONS unit $=\mathrm{mm}$ (inch)


Connection Diagram


3-Phase Hybrid Stepping Motor $\mathbf{0 . 6}$ KT42 series TRISYN

HIGH TORQUE, SILENT ROTATION

## STANDARD SPECIFICATIONS

| MODEL | U N T T | KT42EM06 | KT42HM06 | KT42JM06 | KT42KM06 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -551 | -551 | -551 | -551 |
| DRIVE METHOD |  | BI-POLAR |  |  |  |
| NUMBER OF PHASES | - | 3 |  |  |  |
| STEP ANGLE | deg./step | 0.6 |  |  |  |
| VOLTAGE | V | 5.3 | 2.88 | 3.12 | 4.6 |
| CURRENT | A/2-PHASE | 0.9 | 2.4 | 2.4 | 2.3 |
| WINDING RESISTANCE | $\Omega / 2-P H A S E$ | 5.9 | 1.2 | 1.3 | 2.0 |
| INDUCTANCE | $\mathrm{mH} / 2-$ PHASE | 3.1 | 0.8 | 1.3 | 1.4 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 45 | 90 | 180 | 200 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 6.4 | 12.7 | 25.5 | 28.3 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 10 | 6 | 8 | 9 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 1.4 | 0.8 | 1.1 | 1.3 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 20 | 42 | 60 | 85 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.11 | 0.23 | 0.33 | 0.46 |
| WEIGHTS | g | 140 | 210 | 310 | 360 |
|  | lb | 0.31 | 0.46 | 0.68 | 0.79 |
| INSULATION CLASS | $\square$ | JIS Class E (120 $\left.{ }^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}\right)\left(\right.$ UL VALUE:CLASS B $\left.130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}\right)$ |  |  |  |
| INSULATION RESISTANCE | - | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |  |  |
| DIELECTRIC STRENGTH | $\square$ | 500VAC 50HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |  |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |  |  |

DIMENSIONS unit $=\mathrm{mm}$ (inch)


|  | TORQUE CHARACTERISTICS VS. PULSE RATE <br> (FULL STEP) 24V 2 PHASE | TORQUE CHARACTERISTICS VS. PULSE RATE (MICRO-STEP) 24V 1/4 DIVISIONS | VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { KT42EM06 } \\ -551 \end{array}$ |  |  |  |
| $\begin{array}{r} \text { KT42HM06 } \\ -551 \end{array}$ |  |  |  |
| KT42JM06 <br> -551 |  |  |  |
| $\begin{array}{r} \text { KT42KM06 } \\ -551 \end{array}$ |  |  |  |

CONNECTION CABLE TO MOTOR unit = mm (inch) (Except for KT42EM06-551)


3-Phase Hybrid Stepping Motor $1.2^{\circ}$ KT42 series TRISYN

HIGH TORQUE, SILENT ROTATION

## STANDARD SPECIFICATIONS

| MODEL | U N T T | KT42EM1 | KT42HM1 | KT42JM1 | KT42KM1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -551 | -551 | -551 | -551 |
| DRIVE METHOD |  | BI-POLAR |  |  |  |
| NUMBER OF PHASES |  | 3 |  |  |  |
| STEP ANGLE | deg./step | 1.2 |  |  |  |
| VOLTAGE | V | 5.3 | 2.64 | 2.88 | 3.6 |
| CURRENT | A/2-PHASE | 0.9 | 2.4 | 2.4 | 2.4 |
| WINDING RESISTANCE | $\Omega / 2-\mathrm{PHASE}$ | 5.9 | 1.1 | 1.2 | 1.5 |
| INDUCTANCE | $\mathrm{mH} / 2-\mathrm{PHASE}$ | 2.6 | 0.5 | 0.8 | 1.0 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 70 | 140 | 210 | 280 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 9.9 | 19.8 | 29.7 | 39.6 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 10 | 10 | 12 | 16 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 1.4 | 1.4 | 1.7 | 2.3 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 20 | 42 | 60 | 85 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.11 | 0.23 | 0.33 | 0.46 |
| WEIGHTS | g | 140 | 210 | 310 | 360 |
|  | lb | 0.31 | 0.46 | 0.68 | 0.79 |
| INSULATION CLASS |  | JIS Class E (120 $\left.{ }^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}\right)\left(\right.$ UL VALUE:CLASS B $\left.130^{\circ} \mathrm{C} 266{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |  |  |
| DIELECTRIC STRENGTH |  | 500VAC 50HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |  |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |  |  |

DIMENSIONS unit $=\mathrm{mm}$ (inch)


|  | TORQUE CHARACTERISTICS <br> VS. PULSE RATE <br> (FULL STEP) 24V <br> 2 PHASE | TORQUE CHARACTERISTICS <br> VS. PULSE RATE <br> (MICRO-STEP) <br> 24V <br> 1/4 DIVISIONS | VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { KT42EM } 1 \\ -551 \end{array}$ |  |  |  |
| $\begin{array}{r} \text { KT42HM1 } \\ -551 \end{array}$ |  |  |  |
| $\begin{array}{r} \text { KT42 JM } 1 \\ -551 \end{array}$ |  |  |  |
| $\begin{array}{r} \text { KT42KM } 1 \\ -551 \end{array}$ |  |  |  |

CONNECTION CABLE TO MOTOR unit = mm (inch) (Except for KT42EM1-551)


# 3-Phase Hybrid Stepping Motor <br> $3.75^{\circ}$ 

 KT42 series TRISYNHIGH TORQUE, SILENT ROTATION

STANDARD SPECIFICATIONS

| MODEL | U N T T | KT42EM4 | KT42HM4 |  | KT42JM4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -551 | -551 | -552 | -551 | -552 |
| DRIVE METHOD |  | BI-POLAR |  |  |  |  |
| NUMBER OF PHASES | - | 3 |  |  |  |  |
| STEP ANGLE | deg./step | 3.75 |  |  |  |  |
| VOLTAGE | V | 5.28 | 4.42 | 7.04 | 5.16 | 8.8 |
| CURRENT | A/2-PHASE | 0.8 | 1.3 | 0.8 | 1.2 | 0.8 |
| WINDING RESISTANCE | $\Omega / 2-P H A S E$ | 6.6 | 3.4 | 8.8 | 4.3 | 11.0 |
| INDUCTANCE | mH/2-PHASE | 5.7 | 4.7 | 12.3 | 8.7 | 22.0 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 70 | 130 | 130 | 180 | 180 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 9.7 | 18 | 18 | 25 | 25 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 8.8 | 14.7 | 14.7 | 19.6 | 19.6 |
|  | $\mathrm{Oz} \cdot \mathrm{in}$ | 1.3 | 2.1 | 2.1 | 2.8 | 2.8 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 20 | 38 | 38 | 60 | 60 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.11 | 0.21 | 0.21 | 0.33 | 0.33 |
| WEIGHTS | $g$ | 140 | 210 | 210 | 240 | 240 |
|  | lb | 0.31 | 0.46 | 0.46 | 0.53 | 0.53 |
| INSULATION CLASS |  | JIS Class E ( $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ )(UL VALUE:CLASS B $\left.130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| INSULATION RESISTANCE | - | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |  |  |  |
| DIELECTRIC STRENGTH |  | 500VAC 50HZ 1 min . |  |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |  |  |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |  |  |  |

DIMENSIONS unit $=\mathrm{mm}$ (inch)


## KT42HM4



## KT42JM4



|  | TORQUE CHARACTERISTICS <br> VS. PULSE RATE <br> (FULL STEP) 24V <br> 2 PHASE | TORQUE CHARACTERISTICS <br> VS. PULSE RATE <br> (MICRO-STEP) <br> 24V <br> 1/4 DIVISIONS | VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { KT42EM4 } \\ -551 \end{array}$ |  |  |  |
| KT42HM4 <br> $-551$ |  |  |  |
| KT42HM4 <br> $-552$ |  |  |  |
| $\begin{array}{r} \text { KT42JM4 } \\ -551 \end{array}$ |  |  |  |
| $\begin{array}{r} \text { KT42JM4 } \\ -552 \end{array}$ |  |  |  |

CONNECTION CABLE TO MOTOR unit $=\mathrm{mm}$ (inch) $($ Except for KT42EM4-551)


3-Phase Hybrid Stepping Motor 0.6 KT60 series TRISYN

HIGH TORQUE, SILENT ROTATION
$\square$ STANDARD SPECIFICATIONS

| $M O D E L$ | U N T T | KT60KM06 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -551 | -552 | -751 | -752 |
| DRIVE METHOD | $\square$ | BI-POLAR |  |  |  |
| NUMBER OF PHASES | - | 3 |  |  |  |
| STEP ANGLE | deg./step | 0.6 |  |  |  |
| VOLTAGE | V | 2.09 | 3.52 | 2.09 | 3.52 |
| CURRENT | A/2-PHASE | 3.8 | 2.2 | 3.8 | 2.2 |
| WINDING RESISTANCE | ת/2-PHASE | 0.55 | 1.6 | 0.55 | 1.6 |
| INDUCTANCE | mH/2-PHASE | 1.0 | 3.0 | 1.0 | 3.1 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 500 | 500 | 300 | 300 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 69 | 69 | 42 | 42 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 20 | 20 | 10 | 10 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 2.8 | 2.8 | 1.4 | 1.4 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 170 | 170 | 170 | 170 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.93 | 0.93 | 0.93 | 0.93 |
| WEIGHTS | $g$ | 510 | 510 | 510 | 510 |
|  | lb | 1.1 | 1.1 | 1.1 | 1.1 |
| INSULATION CLASS | $\square$ | JIS Class E ( $120^{\circ} \mathrm{C}$ 2480 ${ }^{\circ} \mathrm{F}$ )(UL VALUE:CLASS B $130^{\circ} \mathrm{C}$ 266 ${ }^{\circ} \mathrm{F}$ ) |  |  |  |
| INSULATION RESISTANCE | $\square$ | 500 VDC 100M $\Omega \mathrm{min}$. |  |  |  |
| DIELECTRIC STRENGTH | - | 500 VAC 50 HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |  |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |  |  |

DIMENSIONS unit $=\mathrm{mm}$ (inch)


|  | $\begin{gathered} \text { TORQUE CHARACTERISTICS } \\ \text { VS. PULSE RATE } \\ \text { (FULL STEP) } \\ 24 \mathrm{~V} \\ 2 \text { PHASE J: } 142 \mathrm{~g} \cdot \mathrm{~cm}^{2}\left(0.780 \mathrm{z} \cdot \mathrm{in}^{2}\right) \end{gathered}$ | TORQUE CHARACTERISTICS <br> VS. PULSE RAAE <br> (MICRO-STEP) <br> $24 V$ <br> $1 / 4$ DIVISIONS J:142 $\cdot \mathrm{cm}^{2}\left(0.780 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ | VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) |
| :---: | :---: | :---: | :---: |
| KT60KM06 -551 |  |  | (G) 10 |
| KT60KM06 -552 |  |  | (G) |
| KT60KM06 -751 |  |  | (G) 10 |
| KT60KM06 -752 |  |  | (G) 10 |

CONNECTION CABLE TO MOTOR unit = mm (inch)


3-Phase Hybrid Stepping Motor 0.6 KT60 series TRISYN

HIGH TORQUE, SILENT ROTATION
$\square$ STANDARD SPECIFICATIONS

| $M O D E L$ | U N T T | KT60LM06 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -551 | -552 | -751 | -752 |
| DRIVE METHOD | $\square$ | BI-POLAR |  |  |  |
| NUMBER OF PHASES | $\square$ | 3 |  |  |  |
| STEP ANGLE | deg./step | 0.6 |  |  |  |
| VOLTAGE | V | 2.77 | 4.84 | 2.77 | 4.84 |
| CURRENT | A/2-PHASE | 3.8 | 2.2 | 3.8 | 2.2 |
| WINDING RESISTANCE | $\Omega / 2-P H A S E$ | 0.73 | 2.2 | 0.73 | 2.2 |
| INDUCTANCE | $\mathrm{mH} / 2-\mathrm{PHASE}$ | 1.7 | 5.6 | 1.8 | 5.7 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 900 | 900 | 600 | 600 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 125 | 125 | 83 | 83 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 25 | 25 | 15 | 15 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 3.5 | 3.5 | 2.1 | 2.1 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 265 | 265 | 265 | 265 |
|  | $\mathrm{Oz} \cdot \mathrm{in}^{2}$ | 1.45 | 1.45 | 1.45 | 1.45 |
| WEIGHTS | $g$ | 720 | 720 | 720 | 720 |
|  | lb | 1.6 | 1.6 | 1.6 | 1.6 |
| INSULATION CLASS | $\square$ | JIS Class E ( $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ )(UL VALUE:CLASS B $\left.130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}\right)$ |  |  |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |  |  |
| DIELECTRIC STRENGTH | - | $500 V A C$ 50HZ 1 min . |  |  |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |  |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |  |  |

DIMENSIONS unit $=\mathrm{mm}$ (inch)


|  | TORQUE CHARACTERISTICS VS. PULSE RATE (FULL STEP) 24 V <br> 2 PHASE J: $142 \mathrm{~g} \cdot \mathrm{~cm}^{2}\left(0.78 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ |  | VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) |
| :---: | :---: | :---: | :---: |
| KT60LM06 -551 |  |  |  |
| KT60LM06 -552 |  |  |  |
| KT60LM06 -751 |  |  |  |
| KT60LM06 -752 |  |  |  |

CONNECTION CABLE TO MOTOR unit = mm (inch)


## 3-Phase Hybrid Stepping Motor <br> $1.2^{\circ}$ KT60 series TRISYN <br> HIGH TORQUE, SILENT ROTATION

- STANDARD SPECIFICATIONS

| MODEL | U N T T | KT60KM1 |  |
| :---: | :---: | :---: | :---: |
|  |  | -551 | -552 |
| DRIVE METHOD | $\square$ | BI-POLAR |  |
| NUMBER OF PHASES | - | 3 |  |
| STEP ANGLE | deg./step | 1.2 |  |
| VOLTAGE | V | 2.09 | 3.52 |
| CURRENT | A/2-PHASE | 3.8 | 2.2 |
| WINDING RESISTANCE | $\Omega / 2-P H A S E$ | 0.55 | 1.6 |
| INDUCTANCE | mH/2-PHASE | 0.8 | 2.5 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 320 | 320 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 45.3 | 45.3 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 20 | 20 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 2.8 | 2.8 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 170 | 170 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.93 | 0.93 |
| WEIGHTS | $g$ | 510 | 510 |
|  | lb | 1.1 | 1.1 |
| INSULATION CLASS | $\square$ | JIS Class E ( $120^{\circ} \mathrm{C}$ 2480 $\left.{ }^{\circ} \mathrm{F}\right)\left(\right.$ UL VALUE:CLASS B $130^{\circ} \mathrm{C}$ 266 $\left.{ }^{\circ} \mathrm{F}\right)$ |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | $\square$ | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |



DIMENSIONS unit = mm (inch)


|  | TORQUE CHARACTERISTICS <br> VS. PULSE RATE <br> (FULL STEP) 24 V <br> 2 PHASE J: $142 \mathrm{~g} \cdot \mathrm{~cm}^{2}$ ( $0.78 \mathrm{oz} \cdot \mathrm{in}^{2}$ ) |  | VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { KT60KM1 } \\ -551 \end{array}$ |  |  |  |
| KT60KM1 -552 |  |  |  |

CONNECTION CABLE TO MOTOR unit $=\mathrm{mm}$ (inch)


3-Phase Hybrid Stepping Motor $1.2^{\circ}$ KT60 series TRISYN

HIGH TORQUE, SILENT ROTATION
$\square$ STANDARD SPECIFICATIONS

| MODEL | U N T T | KT60LM 1 |  |
| :---: | :---: | :---: | :---: |
|  |  | -551 | -552 |
| DRIVE METHOD | $\square$ | BI-POLAR |  |
| NUMBER OF PHASES | - | 3 |  |
| STEP ANGLE | deg./step | 1.2 |  |
| VOLTAGE | V | 2.77 | 4.84 |
| CURRENT | A/2-PHASE | 3.8 | 2.2 |
| WINDING RESISTANCE | $\Omega / 2-P H A S E$ | 0.73 | 2.2 |
| INDUCTANCE | $\mathrm{mH} / 2-\mathrm{PHASE}$ | 1.0 | 3.3 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 600 | 600 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 85 | 85 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 25 | 25 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 3.5 | 3.5 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 265 | 265 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 1.45 | 1.45 |
| WEIGHTS | $g$ | 720 | 720 |
|  | lb | 1.6 | 1.6 |
| INSULATION CLASS | $\square$ | JIS Class E ( $120^{\circ} \mathrm{C}$ 2480 ${ }^{\circ} \mathrm{F}$ )(UL VALUE:CLASS B $130^{\circ} \mathrm{C}$ 266 $\left.{ }^{\circ} \mathrm{F}\right)$ |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | - | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |

DIMENSIONS unit $=\mathrm{mm}$ (inch)


|  | TORQUE CHARACTERISTICS <br> VS. PULSE RATE <br> (FULL STEP) 24 V <br> 2 PHASE J: $142 \mathrm{~g} \cdot \mathrm{~cm}^{2}$ ( $0.78 \mathrm{oz} \cdot \mathrm{in}^{2}$ ) |  | VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { KT60LM1 } \\ -551 \end{array}$ |  |  |  |
| $\begin{array}{r} \text { KT60LM1 } \\ -552 \end{array}$ |  |  |  |

CONNECTION CABLE TO MOTOR unit $=\mathrm{mm}$ (inch)


3-Phase Hybrid Stepping Motor $1.2^{\circ}$ KT86 series TRISYN

HIGH TORQUE, SILENT ROTATION

STANDARD SPECIFICATIONS

| MODEL | U N T T | KT86LM1 <br> -551(SINGLE SHAFT) <br> -561(DOUBLE SHAFT) | KT86SM1 <br> -551(SINGLE SHAFT) <br> -561(DOUBLE SHAFT) |
| :---: | :---: | :---: | :---: |
| DRIVE METHOD | $\square$ | BI-POLAR |  |
| NUMBER OF PHASES | - | 3 |  |
| STEP ANGLE | deg./step | 1.2 |  |
| VOLTAGE | V | 5.4 | 7.0 |
| CURRENT | A/2-PHASE | 3 | 2.5 |
| WINDING RESISTANCE | A/2-PHASE | 1.8 | 2.8 |
| INDUCTANCE | mH/2-PHASE | 18 | 36.6 |
| HOLDING TORQUE | $\mathrm{N} \cdot \mathrm{m}$ | 2.0 | 4.0 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 278 | 556 |
| DETENT TORQUE | $\mathrm{N} \cdot \mathrm{m}$ | 0.1 | 0.2 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 13.9 | 27.8 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 670 | 1340 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 3.67 | 7.34 |
| WEIGHTS | kg | 1.6 | 2.1 |
|  | lb | 3.52 | 4.63 |
| INSULATION CLASS | - |  |  |
| INSULATION RESISTANCE | $\square$ | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | - | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |

DIMENSIONS unit $=\mathrm{mm}$ (inch)


| TORQUE CHARACTERISTICS VS. PULSE RATE (FULL STEP) 24V <br> KT86LM1 |  |
| :---: | :---: |
| TORQUE CHARACTERISTICS VS. PULSE RATE (MICRO-STEP) 24V $1 / 4$ divisions <br> KT86LM1 |  |
| VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) <br> KT86LM1 |  |
| TORQUE CHARACTERISTICS VS. PULSE RATE (FULL STEP) 24V <br> KT86SM1 |  |
| TORQUE CHARACTERISTICS VS. PULSE RATE (MICRO-STEP) 24 V $1 / 4$ divisions <br> KT86SM1 |  |
| VIBRATION CHARACTERISTICS (MICRO-STEP DRIVEN) <br> KT86SM1 |  |

Connection Diagram


## 3-Phase Hybrid Stepping Motor

## KR42 series TRISYN

## HIGH TORQUE, LOW VIBRATION AND LOW OPERATING NOISE

STANDARD SPECIFICATIONS

| MODEL | UNIT | KR42HM4 |  |
| :---: | :---: | :---: | :---: |
|  |  | -551 | -552 |
| NUMBER OF PHASES | - | 3 |  |
| STEP ANGLE | deg./step | 3.75 |  |
| VOLTAGE | V | 2.8 | 4.42 |
| CURRENT | A/2-PHASE | 2 | 1.3 |
| WINDING RESISTANCE | $\Omega / 2-$ PHASE | 1.4 | 3.4 |
| INDUCTANCE | mH/2-PHASE | 1.7 | 4.0 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | *1 49 | *2 49 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 6.9 | 6.9 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 9.8 | 9.8 |
|  | $\mathrm{Oz} \cdot \mathrm{in}$ | 1.4 | 1.4 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 31 | 31 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.17 | 0.17 |
| WEIGHTS | kg | 0.19 | 0.19 |
|  | lb | 0.42 | 0.42 |
| INSULATION CLASS | $\square$ | JISClassE (120 $\left.{ }^{\circ} \mathrm{C} 48^{\circ} \mathrm{F}\right)\left(\right.$ ULVALUE:CLASSB $\left.130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}\right)$ |  |
| INSULATION RESISTANCE | - | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | - | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |

※ $1: 2 \mathrm{~A} / 2-$ Phase
※ $2: 1.3 \mathrm{~A} / 2-$ Phase

DIMENSIONS unit $=\mathrm{mm}$ (inch)


|  |  | TORQUE CHARACTERISTICS VS. PULSE RATE | VIBRATION CHARACTERISTICS |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { KR42HM4 } \\ -551 \end{array}$ | 2PHASE EXCTATON |  |  |
|  | 2-3PHASE EXCTATON |  |  |
| $\begin{array}{r} \text { KR42HM4 } \\ -552 \end{array}$ | 2PHASE EXCTRTON |  |  |
|  | 2-3PHASE EXCTAIOO |  |  |

CONNECTION CABLE TO MOTOR unit $=\mathrm{mm}$ (inch) (Except for KT42EM4-551)


| PIN No. | LEAD COLOR |
| :---: | :---: |
| 1 | YELLOW |
| 2 |  |
| 3 | BLUE |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 | RED |

## 3-Phase Hybrid Stepping Motor $3.75^{\circ}$ KR42series TRISYN

## HIGH TORQUE, LOW VIBRATION AND LOW OPERATING NOISE

## STANDARD SPECIFICATIONS

| MODEL | U N T T | KR42JM4 |  |
| :---: | :---: | :---: | :---: |
|  |  | -551 | $-552$ |
| NUMBER OF PHASES | - | 3 |  |
| STEP ANGLE | deg./step | 3.75 |  |
| VOLTAGE | V | 3.5 | 5.16 |
| CURRENT | A/2-PHASE | 2 | 1.2 |
| WINDING RESISTANCE | $\Omega / 2-P H A S E$ | 1.75 | 4.3 |
| INDUCTANCE | $\mathrm{mH} / 2-\mathrm{PHASE}$ | 2.1 | 8.7 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | *1 88 | *2 88 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 12.5 | 12.5 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 9.8 | 9.8 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 1.4 | 1.4 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 45 | 45 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.25 | 0.25 |
| WEIGHTS | kg | 0.24 | 0.24 |
|  | lb | 0.53 | 0.53 |
| INSULATION CLASS |  | JISClassE (120 $\left.{ }^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}\right)\left(\right.$ ULVALUECCLASSB $\left.130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}\right)$ |  |
| INSULATION RESISTANCE | $\square$ | 500VDC $100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH |  | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |
| ※ $1: 2 \mathrm{~A} / 2-$ Phase <br> ※ $2: 1.3 A / 2-$ Phase |  |  |  |

## DIMENSIONS unit = mm (inch)



|  |  | TORQUE CHARACTERISTICS <br> VS. PULSE RATE | VIBRATION CHARACTERISTICS |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { KR42JM4 } \\ -551 \end{array}$ | 2PHASE EXCTITION |  |  |
|  | 2-3PHASE EXCTITION |  |  |
| $\begin{array}{r} \text { KR42JM4 } \\ -552 \end{array}$ | 2PHASE EXCTATION |  |  |
|  | 2-3PHASE EXCTATION |  |  |

CONNECTION CABLE TO MOTOR unit = mm (inch) (Except for KT42EM4-551)


| PIN No. | LEAD COLOR |
| :---: | :---: |
| 1 | YELLOW |
| 2 |  |
| 3 | BLUE |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 | RED |

## 3-Phase Hybrid Stepping Motor <br> $3.75^{\circ}$ KR42series TRISYN

## HIGH TORQUE, LOW VIBRATION AND LOW OPERATING NOISE

STANDARD SPECIFICATIONS

| MODEL | U N T T | KR42KM4 |  |
| :---: | :---: | :---: | :---: |
|  |  | -551 | -552 |
| NUMBER OF PHASES | $\square$ | 3 |  |
| STEP ANGLE | deg./step | 3.75 |  |
| VOLTAGE | V | 3.5 | 6.5 |
| CURRENT | A/2-PHASE | 2.5 | 1.3 |
| WINDING RESISTANCE | $\Omega / 2-$ PHASE | 1.40 | 5.0 |
| INDUCTANCE | $\mathrm{mH} / 2-$ PHASE | 1.7 | 7.7 |
| HOLDING TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | *1 118 | *2 118 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 16.7 | 16.7 |
| DETENT TORQUE | $\mathrm{mN} \cdot \mathrm{m}$ | 9.8 | 9.8 |
|  | $\mathrm{oz} \cdot \mathrm{in}$ | 1.4 | 1.4 |
| ROTOR INERTIA | $\mathrm{g} \cdot \mathrm{cm}^{2}$ | 57 | 57 |
|  | $\mathrm{oz} \cdot \mathrm{in}^{2}$ | 0.31 | 0.31 |
| WEIGHTS | kg | 0.32 |  |
|  | lb | 0.70 |  |
| INSULATION CLASS | $\square$ | JISClass E (120\% $\left.248^{\circ} \mathrm{F}\right)\left(\right.$ ULVALUECLASSB $\left.130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}\right)$ |  |
| INSULATION RESISTANCE | - | $500 \mathrm{VDC} 100 \mathrm{M} \Omega \mathrm{min}$. |  |
| DIELECTRIC STRENGTH | - | 500 VAC 50 HZ 1 min . |  |
| OPERATING TEMP. RANGE | ${ }^{\circ} \mathrm{C}$ | -10 to 50 |  |
| ALLOWABLE TEMP. RISE | deg. | 70 |  |

※ $1: 2 A / 2-$ Phase
※ $2: 1.3 \mathrm{~A} / 2-$ Phase

DIMENSIONS unit $=\mathrm{mm}$ (inch)

|  |  | TORQUE CHARACTERISTICS VS. PULSE RATE | TORQUE CHARACTERISTICS VS. PULSE RATE |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { KR42KM4 } \\ -551 \end{array}$ | 2PHASE EXCTATION |  |  |
|  | 2-3PHASE EXCTATION |  |  |
| $\begin{array}{r} \text { KR42KM4 } \\ -552 \end{array}$ | 2PHASE EXCCTION |  |  |
|  | 2-3PHASE ECCTATION |  |  |

CONNECTION CABLE TO MOTOR unit = mm (inch) (Except for KT42EM4-551)


| PIN No. | LEAD COLOR |
| :---: | :---: |
| 1 | YELLOW |
| 2 |  |
| 3 | BLUE |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 | RED |

# 3-Phase Hybrid Stepping Motor Driver hich torque, silent rotation SERVEX FTD3S2P11-01 DC24V 

## Features

1. Enables motor rotate silently when micro step driven.
2. Free choice of step angles among $1 / 8,1 / 4,1 / 2$ and $1 / 1$.
3. High torque and high speed response achieved using the constant current driver.
4. Choice of input command between serial pulse signal for each rotating direction and direction signal with pulse signal.
5. A mechanism installed to suppress motor temperature rise by cutting motor current below $70 \%$ of the rated when the system stalls.
6. The input signal terminals include an H . OFF terminal that can cut the power to the motor allowing for free motion.

## Applicable motors

KT42EM4-551
KT42HM4-551,552
KT42JM4-551,552
KT42EM06-551
KT42EM1-551
KT42HM06-551

KR42HM4-551,552
KR42JM4-551,552
KR42KM4-552

## Dimensions Unit $=\mathbf{m m}$ (inch)



## Power supply specifications

Connector specifications
Motor power supply voltage(VM) : $21.6 \mathrm{~V} \sim 39.6 \mathrm{~V}$ Start up time


|  | FTD3S2P11-01side |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Model | Applicable housing | Applicable terminal <br> (real) | Maker |
| $\mathrm{CN}_{2}$ | IL-G-9P-S3T2-E | IL-G-9S-S3C2 | IL-G-2C-SC-10000 | $\mathrm{J} \cdot \mathrm{A} \cdot \mathrm{E}$ |
| $\mathrm{CN}_{1}$ | IL-G-3P-S3T2-E | IL-G-3S-S3C2 | IL-G-2C-SC-10000 | $\mathrm{J} \cdot \mathrm{A} \cdot \mathrm{E}$ |

Logic power supply voltage(5VDC): $5 \mathrm{~V} \pm 5 \%$
Start up time


Motor output current; About 3A max. (different dependeing on the drive parameters of the motor being used)Reset time: $3 \pm 2 \mathrm{MS}$ (Electric current does not pass through the motor during reset.)

## Functions, Setting and Connections

| Switch No. | Switch name | Function | Setting and operation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SEL | Drive pulse format | OFF | CW/CCW pulse input |  |  |
|  |  |  | ON | Serial pulse/rotational direction CCW terminal= "H," Rotation in CCW direction CCW terminal= "L," Rotation in CW direction |  |  |
| 2 | SAVE | Automatic power saving | OFF | NOT ENABLE motor output is reduced to $70 \%$ of the rated power. |  |  |
|  |  |  | ON | NOT ENABLE |  |  |
| 3 | MS1 | Micro step <br> Number of divisions | Number of divisions | $1 / 8$ $1 / 4$ | 1/2 | 1/1 |
|  |  |  | MS1 | ON | OFF | OFF |
| 4 | MSO |  | MSO | ON OFF | ON | OFF |



| Connector <br> Name | Pin No. | Signal Name | Function |
| :--- | :---: | :---: | :--- |
| CN1 | 1 | MOTOR W | To Motor phase - W |
|  | 2 | MOTOR V | To Motor phase - V |
|  | 3 | MOTOR U | To Motor phase - U |



Input signal specifications

| Item | Signal | Specification |  |
| :--- | :---: | :---: | :---: |
|  |  | MIN | MAX |
| High level input voltage | $\operatorname{Vih}(\mathrm{V})$ | 4.0 | $\mathrm{Vcc}+0.3$ |
| Low level input voltage | $\mathrm{Vil}(\mathrm{V})$ | -0.3 | 0.8 |
| Rise time | $\operatorname{Tr}(\mu \mathrm{S})$ | 2.0 | 9.5 |
| Fall time | $\operatorname{Tf}(\mu \mathrm{S})$ | - | 0.5 |
| Low level maintenance | $\operatorname{Twi}(\mu \mathrm{S})$ | 10 | - |
| High level maintenance | $\operatorname{Twh}(\mathrm{n})$ | 100 | - |

Note)Specified the voltage waveform between the user circuit ground and the FTD3S2P11-01 terminal.


# 3-Phase Hybrid Stepping Motor Driver HIGH TORQUE, SILENT ROTATION SERVEX FTD3S3P12-01 DC24V 

## Features

1. Ultra-compact driver measuring a mere 2.2 X 2.9 X 1.7inch.
2. Fixed-current driver makes it possible to obtain high torque and excellent responsiveness.
3. Input commands may be selected from either of direction-of-rotation separate serial pulse signals or a combination of directional signals and pulse signals.
4. Through the use of 3-bit external signals, electric current settings may be specified to any one of a range of 8 different settings from 0.55-3A/2-phase power.
5. The internal trimmer may also be used to adjust power settings even more precisely.
6. An automatic save feature is also provided which makes it possible to save from 45 to 60 percent of the power remaining at the time of shutdown to drive the motor, thus making it possible to prevent the temperature of the motor from rising. Input signal pins contain $h$. off pins which may be used to cut power to the engine, thus make it possible to free the motor.

## Applicable motors

KT35FM1-552
KT56JM4551,552,553,554
KT42EM4-551
KT56KM4-551,552,553
KT42HM4-551,552
KT56LM4-551,552,553
KT42JM4-551,552
KT60KM06-552,752
KT60LM06-552,752
KT86SM1-551

Dimensions $\quad \underset{\substack{\text { Unit } \\ 57.25)}}{\text { mm(inch) }}$


## Power supply specifications

Connector specifications

|  | FDD3S3P12 side | Specification |  | Maker |
| :---: | :---: | :---: | :---: | :---: |
|  | Model | Applicable Housing | Applicable terminal <br> (real) |  |
| $\mathrm{CN}_{1}$ | IL-G-9P-S3T2-E | IL-G-9S-S3C2 | IL-G-C2-SC-10000 | J.A.E |
| $\mathrm{CN}_{2}$ | IL-G-3P-S3T2-E | IL-G-3S-S3C2 | IL-G-C2-SC-10000 | J.A.E |

Functions, Setting and Connections

| Connector Name | Pin No. | Signal Name | Function |
| :---: | :---: | :---: | :---: |
| CN2 | 1 | VM | Motor power supply(to be connected to 12~24V power supply) |
|  | 2 | P.GND | Motor power supply grounding wire(to be connected between and port and interior panel) |
|  | 3 | CW | CW directional drive pulse and serial pulse signal input |
|  | 4 | CCW | CCW directional drive pulse and direction-of-rotation signal input |
|  | 5 | CO | Motor voltage setting "0" |
|  | 6 | C1 | Motor voltage setting "1" |
|  | 7 | C2 | Motor voltage setting "2" |
|  | 8 | HOFF | Motor h. off signal input (H: state in which power is cut off to motor) |
|  | 9 | GND | Signal GND |

$\square$

| Connector <br> Name | Pin No. | Signal Name | Function |
| :--- | :---: | :---: | :---: |
| CN1 | 1 | MOTOR W | To be connected to W phase of 3-phase motor |
|  | 2 | MOTOR V | To be connected to V phase of 3-phase motor |
|  | 3 | MOTOR U | To be connected to U phase of 3-phase motor |



| Switch No. | Switch Name | Function | Switch position and operation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SEL | Pulse input direction | OFF | CW/CCW pulse input |  |  |  |  |
|  |  |  | ON | Serial pulse/direction of rotation CCW pin = " $L$ " : rotate in direction of $C W$ CCW pin = " H " : rotate in direction of CCW |  |  |  |  |
| 2 | SAVE | Automatic motor current save | OFF <br> After 0.23 seconds after the termination of transmission of input pulses, the output current of the motor will be lowered to the current used during saves. | ENABLE |  |  | Motor current (A) | Save current (A) |
|  |  |  |  | CO | Cl | C2 |  |  |
|  |  |  |  | H | H | H | 0.55 | 0.25 |
|  |  |  |  | L | H | H | 0.90 | 0.45 |
|  |  |  |  | H | L | H | 1.25 | 0.70 |
|  |  |  |  | L | L | H | 1.60 | 0.95 |
|  |  |  |  | H | H | L | 1.95 | 1.20 |
|  |  |  |  | L | H | L | 2.30 | 1.40 |
|  |  |  |  | H | L | L | 2.65 | 1.60 |
|  |  |  |  | L | L | L | 3.00 | 1.80 |
|  |  |  | ON | NOT ENABLE(Disengaged) |  |  |  |  |
| 3 | EX | Excitation method | OFF | Full-step (2-phase excitation) |  |  |  |  |
|  |  |  | OFF | Half-step (2-3 phase excitation) |  |  |  |  |
| 4 | NC | Not connected |  |  |  |  |  |  |

## Input circuit



User Side
FTD3S3P12-01 Input Circuit

Input signal specifications

| Item | Signal | Specification |  |
| :--- | :---: | :---: | :---: |
|  |  | MIN | MAX |
| High level input voltage | $\operatorname{Vih}(\mathrm{V})$ | 4.0 | 5.3 |
| Low level input voltage | $\operatorname{Vil}(\mathrm{V})$ | -0.3 | 0.9 |
| Rise time | $\operatorname{Tr}(\mu \mathrm{s})$ | 2.0 | 9.5 |
| Fall time | $\operatorname{Tf}(\mu \mathrm{s})$ | - | 0.5 |
| Input Pulse Range | $\operatorname{Twl}(\mu \mathrm{s})$ | 10 | - |
| Direction of Rotation change Timing | $\operatorname{Td}(\mathrm{ns})$ | 100 | - |

Note)Specified the voltage waveform between the user circuit ground and the FTD3S3P12-01 terminal


# 3-Phase Hybrid Stepping Motor Driver hich torque, silent rotation SERVEX FTD3S3P14-01 DC24V 

## Features

1. Micro-step drive makes for quite operation.
2. Stepping angles may be selected from any one of $1 / 8,1 / 4,1 / 2$, and $1 / 1$ settings.
3. Fixed-current driver makes it possible to obtain high torque and excellent responsiveness.
4. Input commands may be selected from either of direction-of-rotation separate serial pulse signals or a combination of directional signals and pulse signals.
5. A feature is also provided which makes it possible to save from 70 percent of the power remaining at the time of shutdown, thus making it possible to prevent the temperature of the motor from rising.
6. Input signal pins contain h. off pins which may be used to cut power to the engine, thus make it possible to free the motor.

## Applicable motors

KT35FM1-552
KT56JM4551,552,553,554
KT42EM4-551
KT56KM4-551,552,553
KT42HM4-551,552
KT56LM4-551,552,553

KT42JM4-551,552
KT60KM06-552,752
KT60LM06-552,752
KT86SM1-551


## Power supply specifications

Motor power supply voltage(VM) : $21.6 \mathrm{~V} \sim 39.6 \mathrm{~V}$
Start up time


Logic power supply voltage(5VDC) : $5 \mathrm{~V} \pm 5 \%$
Start up time


Motor output current; About 3A max.(different dependeing on the drive parameters of the motor being used)

## Functions, Setting and Connections



## Input circuit

## Input signal specifications

| Item | Signal | Specification |  |
| :--- | :---: | :---: | :---: |
|  |  | MIN | MAX |
| High level input voltage | $\operatorname{Vih}(\mathrm{V})$ | 3.5 | 5.3 |
| Low level input voltage | $\operatorname{Vil}(\mathrm{V})$ | 0.0 | 1.0 |
| Rise time | $\operatorname{Tr}(\mu \mathrm{s})$ | - | 5.0 |
| Fall time | $\operatorname{Tf}(\mu \mathrm{s})$ | - | 5.0 |
| Input pulse range | $\operatorname{Tw}(\mu \mathrm{s})$ | 10 | - |
| Direction of rotation change timing | $\operatorname{Td}(\mathrm{ns})$ | 100 | - |

[^0]

## Certified as Japan's first ISO14001 small motor manufacturer

Quality, environment and safety have always remained as top priorities in Japan Servo's business policy. Our Urizura (Ibaraki Prefecture) production facility for fans and water circulation pumps was first approved for ISO9001 in March 1994 by Lloyd 's Register Quality. During the following year, the Kiryu (Gunma Prefecture) factory, centered on the production of a wide array of motors, was certified, along with the Hotaka (Nagano Prefecture) and Gunma (Gunma Prefecture) production affiliates. In 1997, another affiliate, Saitama Koki (Saitama Prefecture) became ISO9001 compliant. On the international forefront, Japan Servo Motors (S) Pte., Ltd. (Singapore) and P.T. Japan Servo Batam (Indonesia) have been ISO9002 since 1994.

As for meeting ISO14001 environmental standards, an environmental management committee was organized in 1996 to launch a company wide effort under the slogan, "Working together towards a clean environment in the future. " Five fundamental principles center around the continual improvement of the environment:
-Scrap recycling and improved industrial waste treatment
On-going sewage PH surveillance system

- Standardized motor parts for reusage
-Light-weight downsizing of products
-Design of high efficiency motors

Our policies, commitment and close adherence to these fundamental principles have contributed significantly to receiving ISO14001 safety approval for our Kiryu site, including the factory, laboratory, and Servo Techno System Co., Ltd. facility, following the audit by JACO, a Japanese environmental certification organization. We are proud of being the first Japanese small motor manufacturer to receive this level of qualification.

|  | Facility | Certificate No. | Dated |
| :--- | :--- | :--- | :--- |
| ISO9001 | Urizura Operation | 930229 | Mar. 1994 |
|  | Kiryu Operation | 930231 | Mar. 1994 |
|  | Japan Servo Hotaka Co., Ltd. | 941887 | Aug. 1995 |
|  | Japan Servo Gunma Co., Ltd. | 946447 | Nov. 1995 |
| SO9002 | Japan Servo Singapore Pte, Ltd. | $94 / 2775$ | Jan. 1994 |
|  | PT. Japan Servo Batam | $94 / 3741$ | Sep. 1994 |
|  | Saitama Koki Co., Ltd. | 957132 | Feb. 1997 |
| ISO14001 | Kiryu-Urizura Site | EC971191 | Feb. 1998 |

$R \& D$, design engineering and manufacturing activities on precision small motors, sensors and their application systems in Kiryu Site including Kiryu Operation, Laboratory and Servo Techno System Co., Ltd.

URL=http://www. japanservo. com/
Receive our product database on CD-ROM via internet.

| Distributed by : | Represented by : <br> JAPAN SERVO CO.,LTD. <br> 7 Kanda Mitosirocho, Chiyodaku, <br> TOKYO, 101, JAPAN <br> Phone: 81-3-3292-3506 <br> Facsimili 81-3-3292-3509 |
| :---: | :---: |


[^0]:    Note)Specified the voltage waveform between the user circuit ground and theFSD3S3P11-01terminal

